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The unsteady laminar flow due to the penetration of a horizontal jet of constant 
density into a stratified fluid is considered. A numerical solution of the Navier- 
Stokes equations under the Boussinesq approximation is obtained by means of 
an implicit kite-difference method. Results for different values of the Reynolds 
and internal Froude numbers are given and discussed. 

1. Introduction 
Recent advances in numerical methods applied to fluid mechanics now permit 

the use of such methods to study the fundamental character of flows which are 
too complicated to be solved by analytical methods. The problem considered 
here belongs to this class. More precisely, this paper is concernedwith the unsteady 
evolution of a laminar horizontal jet in a stratified fluid initially at rest. This 
problem, which has various applications (e.g. to the behaviour of a fluid dis- 
charge into a stratified reservoir or lake), is considered here in the case where the 
internal Froude number is sufficiently small to induce noticeable ‘upstream 
influence ’ . 

Theoretical or experimental studies of jets and plumes in a stratified medium 
are rather numerous: results and references can be found in the recent book by 
Turner (1973) or else in the survey article by Gebhart (1973). Among the most 
recent work on the subject, we mention that of Tenner & Gebhart (1971), List 
(1971) and Maxworthy (1972). The last two references consider the case of a hori- 
zontal jet, which differs fundamentally from the vertical case generally studied. 

Very little numerical work based on the solution of the Navier-Stokes equa- 
tions has been done on this subject or on related problems. Except for the studies 
by Wessel (1969) and by Young & Hirt (1972), who considered the special case 
of the evolution in time of a given volume of homogeneous fluid embedded in a 
stratified environment, the only work is due to Trent & Welty (1973), who were, 
in fact, concerned only with the steady vertical case. Even unsteady jet flows 
of a homogeneous fluid have been studied very little by means of numerical 
solution of the Navier-Stokes equations: to our knowledge, this problem has 
only been considered by Fromm (1967) and, recently, by Grant (1974). 

The physical problem is described in 3 2 and the corresponding mathematical 
problem is defined in 0 3. In  0 4, the finite-difference method is described and 0 5 
is devoted to a discussion of the numerical results. 
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2. The physical problem 
We consider the unsteady evolution of a laminar horizontal plane jet in a 

stratified fluid. A rectangular basin ABB‘A’ (figure 1) of length AB = A‘B‘ = L 
and height AA’ = BB‘ = 2 H  is filled with a viscous incompressible fluid, initially 
at rest and linearly stratified in temperature: 

T(y”) T,(y”) = (2~)-1(T,-T,)y”+~(Ip,+T1).  (2 .1)  

Thus T = Tl at the bottom AB (y” = - H )  and T = T, a t  the top A‘B’ (y” = H ) .  
We assume T, > TI, so that the stratification is statically stable. 

The density p is related to the temperature T by the equation of state 

P = Po[~-P(T-~o~ l ,  (2.2) 

where /3 is the volume coefficient of thermal expansion; the reference quantities 
po and To are defined here by 

Po = 4(Pl  + P A  To = w!l+ T!), (2.3) 

where p1 and p ,  are respectively the values of the density a t  the bottom and the 

From ( 2 . 1 )  and (2 .2 ) ,  the initial density distribution ps of the fluid inside the 
top. 

tank is 

and the pressure p is hydrostatic, i.e. 

(2.4) P(y”) = PAY”) = POP - ( P / 2 H )  (Tz- Tl) y”1, 

P(y”) = ps(y”) = - gp,[y”- (/3/4H) (T, - T,) g21 + constant, (2.5) 

where g is the gravitational acceleration. 
Now, from the time t = 0, fluid is progressively injected, with a parabolic 

velocity profile, into the tank from a vertical slot EE’ of height D located on 
AA’ symmetrically with respect to the horizontal axis 02 (i.e. EE’ corresponds 
to 2 = 0, [ y”I < 4D). The physical properties of the injected fluid are the same 
as those of the surrounding fluid a t  rest, but its temperature is constant and 
equal to To. Therefore its density is also constant, and equal to po, the local 



A horizontal jet i n  a stratised &id 61 

density at y" = 0 of the fluid initially at rest. Simultaneously, fluid leaves the 
basin vertically at AB and at A'B' with opposite vertical velocities partly 
determined by the condition of conservation of volume flux. 

The above choice of geometrical configuration was suggested by the experi- 
mental work of Maxworthy (1972).  However, in Maxworthy's experiments the 
jet was injected into a tank with a free surface. The correct numerical treatment 
of a free surface is very complicated and, although the description of the motion 
of the fluid near the free surface would be interesting, it was not our purpose 
here and we have chosen, in a first treatment of the problem, to locate the fixed 
top at  a (hopefully) sufficiently large distance from the slot (OA'IOE' = 7.125) 
and to simulate the rising free surface by imposing a vertical exit velocity. For 
simplicity the boundary condition at the bottom has been chosen to yield a 
symmetrical solution and computation can therefore be restricted to the half- 
domain OABO'. Consideration of a more realistic boundary condition (zero 
velocity a t  the bottom) would destroy the symmetry and, in order to maintain 
the same accuracy, would necessitate twice as many discretization points. Note 
that, in the present calculations, the magnitude of the exit velocity is equal to 
0.0344 times the maximum value U, of the velocity a t  the entry. 

In other ways also we have chosen to depart significantly from the experimental 
conditions (as regards, for example, the size of the tank and the magnitude of the 
diffusion) in order to be able to minimize the effects of the inherent numerical 
errors due to discretization and consequently to be confident about the accuracy 
of the results. Hence comparison with the experimental results of Maxworthy 
(1972) can be a t  best qualitative; this comparison will show that the main 
features of the flow observed experimentally are reproduced by the numerical 
solution. 

3. The equations of motion 

under the Boussinesq approximation: 
The problem is studied by numerical solution of the Navier-Stokes equations 

po(au/at" + u . 0u) + Op = p02u - gpjl, (3.1) 

c;,p,(aqaf+u.V~) = KVT, (3.2) 

O.u = 0, (3.3) 

where U is the velocity, p and K are respectively the coefficients of viscosity 
and of thermal conductivity, C;, is the specific heat a t  constant pressure, j is a 
unit vector in the vertical direction and 0 = (aja2, a/@). 

We now introduce the perturbation quantities 8, 8 and T with respect to the 
corresponding values p,,, T, and ps for the fluid a t  rest: 

p = p s + i i ,  T =  %+8, p=p,+?.  (3.4) 

Finally, the non-dimensional variables 

(3.5) 

4- 2 

x = 2 / 2 0 ,  ?/ = g /2D,  t = (U0/2D) t", T = alpo, 

v = (u, W )  = ulu,, = g/p0 u& e = 8 j ( q  - q) 
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are considered, so that (3.1)-(3.3) become 

(3.6) 
~ + v . v v + v ~  = -v2v+Fej, 1 3 
at R 

1 1 g+v.ve+-v.j =-v2e, RP 
at 3 

v.v = 0, (3.8) 

where T has been eliminated by using the equation of state (2.2). I n  (3.6)-(3.8) 
several non-dimensional parameters appear: 

where R is the Reynolds number, P the Prandtl number, 7 a shape parameter 
and F the internal Froude number. Note that the buoyancy force in (3.6) is 
characterized by the parameter 3 P 2 .  

The initial conditions at t = 0 are 

N x ,  y, 0) = v(2, y, 0) = w, y, 0) = 0, (3.10) 

therefore n(x, y, - 0) = 0. The boundary conditions, as described in Q 2, are now 
specified. 

(a)  Along AA’, x = 0, 

(3.1 1 a) 

(3.1 1 c) 

( b )  Along BB’, x = x1 = L/(2D), IyI < 43, 

(3.13) 

The function #(t )  in (3.11) allows for a smooth increase in the velocity of the 
injected fluid from zero at t = 0 to its final steady value at t = to; we have chosen 
a polynomial satisfying # ( O )  = #’(O)  = #’(to) = 0 and #(to) = 1, 

viz . - 2(t0 + f 3 )  t + to(to + 2t;3)] if t 
if t > to. 

(3.14) 
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It has been confirmed numerically that, as expected, the flow at subsequent 
times is not sensitive to the particuIar form chosen for the function g%(t). 

The function V ( x ) ,  which characterizes the vertical exit velocity, is assumed 
to be a constant A except near the corners of the tank; more precisely, 

(3.16) 1 if 0 < 2 < xo, 
V ( x )  = Ax, if xo < 17: < xl-xo, r A@,-x)  if xl-x, < x < x,, 

with z0 = i+l and the constant A ,  which is determined by the conservation 
of volume flux, given by A = 1/6(x, - x,). 

With these initial and boundary conditions the solution of (3.6)-(3.8) possesses 
the following symmetry properties: 

(3.16) 

The range of the physical parameters which will be considered in the numerical 
computation makes it reasonable to assume that the flow remains laminar and 
symmetrical. For the values of the Reynolds number used here (R = 10 and 
100) the large values of P-2 considered = 32 and 64) ensure the validity of 
this assumption. I n  the case F-2 = 0, it  is possible that a real flow does not 
remain symmetrical for R = 100,f but the case F-2 = 0 is considered here only 
for comparison, the emphasis being on the stratified case. 

Thus the numerical solution is computed in the lower half-domain y < 0 with 
the following conditions on the axis y = 0: 

I u(2, - Y, t )  = 4x9 Y, t ) ,  v(2, -3, t )  = - v(x, Y, t ) ,  
N x ,  - Y, t )  = 4x2 Y, t ) ,  w, - 9, t )  = - O(x, y, t ) .  

at+, o,q/ay = w(x,O,t) = 8(x, 0 , t )  = 0. (3.17) 

4. The numerical method 
The finite-difference scheme used for solving the problem is an implicit scheme 

of the Crank-Nicholson type. The spatial derivatives are approximated with 
second-order-accurate centred differences except for the convective derivatives 
in the 19 equation, which are discretized with fourth-order-accurate differences. 
The last choice was made in order to minimize the magnitude of the truncation 
error associated with these convective terms compared with the diffusion term, 
which has the coefficient l/RP, which can be small. The grid is the one used in 
the MAC method (Harlow & Welch 1965). The computational domain is divided 
into square cells (i, j )  of side h; the pressure n is defined at the centre of each 
cell, the horizontal and vertical velocity components u and v are respectively 
defined at the mid-points of the vertical and horizontal edges of the cell, and 
finally the temperature 0 is defined a t  the corners (see figure 6 in the appendix), 

t However, note that experimental (Beavers & Wilson 1970) and numerical (Grant 1974) 
studies have shown that jets emitted in an infinite environment remain symmetrical for 
higher Reynolds numbers. 
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I n  order to simplify the notation, we introduce the symbols ?hh, vh ,  8, and n h  to 
represent the values of the unknowns, i.e. 

n+i n+l 
u h  U<+t,j ,  vh E v ~ $ ~ S 7  8 h  Oi++,i+&, nh WE$', 

where n is the index of time, so that t = nk, where k is the time step. The finite- 
difference equations are written in the symbolic form 

6p,(uh, vh, 7Th) = O, (4.lu, b)  

(4.1 c,  d )  

Equations (4 . lu ,  b )  correspond to the momentum equations, ( 4 . 1 ~ )  is the tem- 
perature equation and (4.1 d )  is the incompressibility condition. Their forms are 
given in the appendix. 

The accuracy of the scheme is O(k2, h2) and, owing to its implicit character, 
i t  is expected to be unconditionally stable. The symmetry conditions a t  y = 0 
are imposed by introducing extra rows of points outside the computational 
domain. The spatial derivatives of a, v and 0 near the boundaries are approxi- 
mated by non-centred [for 21 and w in (4.lu,  b ) ]  and centred [for 8 in (4.lc)l  
differences with second-order accuracy. 

The solution of the nonlinear algebraic system determining the unknowns 
u h ,  Vh, 8, and Wh is obtained by the iterative procedure used by Fortin (1972), 
Begis (1972) and also by Childress & Peyret (1976); a related method was 
proposed by Chorin (1968). This iterative procedure, characterized by the index 
v, is defined by 

( 4 . 2 ~ )  

(4.2b) 

( 4 . 2 ~ )  

(4.2d) 

and is initiated with the values of Uh,  Vh, 8, and ?i-h at the previous time level. 
The values chosen for the constant parameters K ,  x and h must ensure 

convergence. Necessary conditions for convergence can be obtained by a study of 
the stability of the scheme (4.2) considered as an approximation of a 'time- 
dependent' system (Y being the index of 'time'). The system (4.2) is simplified by 
neglecting convective and gravitational terms. Then, by imposing the condition 
that the spectral radius of the associated matrix of amplification should not 
exceed one, we get the conditions 

Pv(@'h, vh, 7Th, o h )  = O, 

9e(uh, vh ,  o h )  = O,  g(uh, vh) = O .  

U$+'- U i  + K g ) , ( U l ,  V i ,  ni) = 0, 

V;l+i- v; + K=qv(uyh+l, v;, T i ,  ei)  = 0, 
&+l- 8; + x9e(uy,f', vyh+l, &) = 0, 

n;l+' - n; + A9(Uk+,+', V;l+;+') = 0, 

K > 0 ,  X > o ,  h>o ,  

These conditions were found to be sufficient for effective computations. 
Note the following particular points concerning the numerical procedure. 
(i) In  order to improve the convergence, the iterative procedure described 

above was modified by using in each of (4.2u-d) the values of the corresponding 
unknowns at iteration Y +  1 as soon as they were computed (the Gauss-Seidel 
technique). 
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(ii) The optimal values of the parameters K ,  x and h were determined by 
numerical tests. For given values of K and x, the best convergence is obtained 
with a, value of h close to  the maximum allowed by (4.3). 

(iii) Convergence of the iterative procedure is assumed to be obtained when 

By taking account of the magnitude O(k2,  h2) of the truncation error corres- 
ponding to the values of k and h (k = & and h = &), the value of e was chosen 
between 3 x depending on the case considered and on the 
phase in time (initial or succeeding phase). Generally, the maximum value of 
the residues is given by the momentum equation (either uh or vh); then the 
divergence equation is satisfied to within less than and the B, equation to 
within less than 1 . 2 ~  The number of iterations necessary to achieve 
convergence varies with the values of flow parameters (the Reynolds and Froude 
numbers). In  the initial phase ( t  < to = 0.25) this number lies between 50 and 
150, and when t > 0.25 it varies between 10 and 50. The computations were 
stopped at t = 1.50. 

max{I%l, 1%1, I%/> l q l  < 6. 

and 4 x 

5. Discussion of numerical results 
All the calculations were done for x, = L/(2D) = 5, 4 = HID = 36625, 

to = 0.25, P = 10, h = &, k = & and x = K .  Two values of the Reynolds number 
were considered: R = 10 and R = 100. For each, computations were performed 
with three different values of the internal Froude number: F-2 = 0,32  and 64. 
We used K = 0.195 x and h = 0.875 for R = 10 and K = 0.293 x 10-2 and 
h = 0.59 for R = 100. Some results have already been presented (Peyret 1974). 

The profiles of horizontal velocity u at several vertical sections (x = constant) 
in the ta,nk and at various times are shown in figure 2. These profiles correspond 
to the lower half ABO’O of the domain and must be completed by symmetry. 
The form of the u profiles clearly shows the effect of stratification. The fluid 
injected at 2 = 0 pushes ahead of it the ambient fluid, which remains, to some 
extent, channelled by the effect of the buoyancy force, which tends to prevent 
downward motion (upward in the upper region y > 0).  Hence the perturbations 
created by the penetration of the jet are felt at very large distances ahead of it. 
This explains the velocity profiles observed at these distances (e.g. x 2 1.20 a t  
t = 1-50), which have large maxima on the axis y = 0 (the evolution of the 
velocity on the axis is shown in figure 3). The phenomenon of ‘upstream influence’ 
is characteristic of slow stratified flows for which F-2 is sufficiently large. Several 
theoretical as well as experimental studies (see, for example, Martin & Long 
1968; Pa0 1968; Graebell969) have exhibited such behaviour in the case of the 
slow motion of a body in a stratified fluid. 

The velocity profiles (figure 2) are quite similar to those obtained experiment- 
ally by Maxworthy (1972). The characteristic wavy shape of the profiles corres- 
ponds to the presence of eddies and reverse flows. Although it is known in the 
case of perturbations created by the motion of a body (Martin & Long 1968; 
Pao 1968) that the wavy shape is not due to end effects, it  is likely that the 
influence of the end BB’ is not entirely negligible in our results (any more than 
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U 

FIGURES 2 (a, b) .  For legend see facing page. 

in the experimental results of Maxworthy). The end effect becomes more im- 
portant as time increases and ultimately plays a dominant role in the develop- 
ment of backflow. 

One of the interesting features of the flow is the presence of eddies. For 
example, in the case R = 100, F-2 = 64 a primary eddy appears near the 
entrance at t = 0-30 approximately. (We recall that the entry velocity has 
reached its steady value of one at t = to = 0-25.) This eddy is convected by the 
flow while being diffused. Then, around t = 0.85, a second eddy appears, still 
near the entrance. I n  order to illustrate the flow pattern, the streamlines 
$ = constant at t = 0.75 and t = 1.50 are given in figures 4(a)  and (b) ,  which 
show the lower half of the field. For comparison, we have drawn in figure 4(c) 
the streamlines a t  t = 1.50 in the case R = 100, = 0, i.e. without buoyancy 
effects. 

Note that at t = 1.50 (when the computations were stopped) the flow is 



u 
0 0  1 1 0  1 0  1 0  1 0  1 0 0.5 

* o  

,/' 

0.4375 

FIQURE 2. Horizontal velocity u; R = 100. -, F-2 = 64; ---, P2 = 32; 
--- , Fa = 0. (a) t = 0.50. ( b )  t = 0.75. (c) t = 1.0. (d) t = 1.60. 

highly unsteady in the case R = 100, F-2 = 64 

(max lau/atl = 0-46, max Jav/atl = 0.59 and max laO/atl = 0.035) 

and regions of reverse flow are continuously developing; even in the case R = 100, 
F-2 = 0 the flow is not steady at t = 1.50. 

= 64, an eddy appears near the entrance a t  t x 0.30. 
However, this eddy is highly diffused and completely disappears as time goes 
on; moreover, no other eddy is created. The streamlines at t = 0.75 and t = 1.50 
are shown in figures 4 (d) and (e). At the latter time the flow is unsteady but the 
time derivatives are small (max lau/atl = 0.067, max lav/atl = 0.048 and 
max \aO/atI = 0.011). The case R = 10, P2 = 0 at t = 1.50 (steady flow) is 
illustrated in figure 4 (f). 

It is apparent that in the case R = 100 the jet is constricted at some sections 
by the presence of eddies, so that the fluid is accelerated at these sections and 

In the case R = 10, 
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FIGURE 3. Velocity on the axis of symmetry. (a) R = 100. 
(6)  R = 10. Curves as in figure 2. 

the magnitude of the velocity on the axis can exceed its value at  the entry; 
the oscillatory nature of certain curves in figure 3 (a) reflects these constriction 
effects. 

Maxworthy’s experiments exhibit a ‘slug’ region or, more precisely, the 
progression of the injected fluid as a slender tongue of constant-density fluid 
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FIGURES 4(a-d). For legend see page 60. 
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FIGURE 4. Streamlines. 

(4 (b)  (4 (4 (4 (f) 
R 100 100 100 10 10 10 
F-= 64 64 0 64 64 0 
t 0.76 1.60 1-60 0.75 1.50 1-50 

with practically no diffusion into the surrounding fluid; the absence of diffusion 
was due to the fact that the experiments were performed with salt water. The 
present numerical results showa similar behaviour but it is less marked essentially 
because of the larger effect of thermal diffusion. Figure 5 shows some profilm 
of perturbation temperature 8, which is related to the perturbation density T by 
7 = (p2-p1) 8/po. The region with constant temperature T = To (i.e. constant 
density p = po), which characterizes the ‘slug’, is delimited by dotted lines (pink 
8 at t = 0.75 and s’ at t = 1.50). 

Let us compare the temperature profiles at the two times t = 0.75 and t = 1-60. 
First of all we notice the heating near the axis y = 0, showing the progression 
of the ‘slug’ (up to x = 1-20 approximately). Moreover, regions with increasing 
or decreasing temperature appear according to the general direction of the 
vertical flow, i.e. according as hot fluid is descending from upper layers or cold 
fluid is rising from lower layers. 

m e  condition imposed on w a t  the horizontal boundary induces negative 
vertical velocities in the field; hence there is local heating yielding a tendency 
towards vertical uniformity of the temperature (outside boundary layers which 
survive owing to the boundary condition imposed on the temperature). For the 
times considered here ( t  6 1.50) the phenomenon remains limited; however, if 
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the computations were continued to larger times, i t  might be desirable to 
minimize this effect by, for example, increasing the size of the tank. 

The author is indebted to Prof. T. Maxworthy for suggesting the problem. 
This work has been partially supported by the National Science Foundation 
and the Office of Naval Research through grants to the University of Michigan 
for research on stratified flows. The author would like to express his thanks to 
Prof. C.-S. Yih for his hospitality and many helpful comments. 

Appendix. Finite-difference equations 
Let us introduce the first difference operators 

(8,ff),,m = (h+l,m - h , m ) h  
(8;fh.m = (Am --A-l,rn)h 

(8:f)z,, = (fZ+l,rn -h-1,,)/(24? 

(8kf)l,rn = ( - f z+2 ,m + %+l,rn - *h-1,, +fi-2,rn)/(12h), 
and analogous operators S;, 8;, 8; and 8; for the y differences; the discretized 
Laplacian operator is V i  = 82 8; + 8; 8;. In  the above expressions, h is the grid 
size and I and rn may or may not be integers (e.g. 1 = i, i + 4, .. . , rn = j ,  j + 4, ... ; 
see figure 6 ) .  

Z 

FIGURE 6. Discretization of 2, y phne. 

The finite-difference equations (4.1) have the following form (k is the time step) : 

2Zu E k-l(u"+l- u") i + ) , j  + i$[(UeU)"+l+ (US: U)"Ii+),j 

.gV = IC-1(?P+l- v")i,3+) + $[(@a: V)"+1+ (526," V)"],,$+$ 

+ g[(e8; u)"+1+ (v^8;zL)"]$*),j + (62 ?r,Z$* 
- (2R)-1V;(U"+l+ "")i+),i = 0, 

+ &[(?d,"v)"+l+ (d," W)"],,j+4 + (8,' 7T):p 
- (2R)-1V;(v"+l+ v")i,i+$ - *qP-2(@+1+ i9")i,j+H = 0, 
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